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Abstract
A method is proposed to transform any analytic solution of the Bloch equation
into an analytic solution of the Landau–Lifshitz–Gilbert equation. This allows
for the analytical description of the dynamics of a two-level system with
damping. This method shows that damping turns the linear Schrödinger
equation of a two-level system into a nonlinear Schrödinger equation. As an
application, the effect of damping on self-induced transparency is investigated.

PACS numbers: 03.65.−w, 42.50.Md, 05.45.−a, 75.10.Dg

1. Introduction

Two-level systems have become almost ubiquitous in modern physics. They are found for
instance in laser physics, magnetic resonance spectroscopies, quantum computers, quantum
teleportation and optoelectronics. The state of a two-level system can be described by an
effective moment M and its dynamics by the equation Ṁ = −γ M × B, where γ is the
gyromagnetic factor and B is an external time-dependent field. We follow the standard (and
inappropriate) custom of calling Ṁ = −γ M × B the ‘Bloch equation’.

The main drawback of the Bloch equation is its absence of damping. There are many
phenomenological models of damping for two-level systems. When decoherence is small, the
system remains in a pure state, the length of M is constant and damping is taken into account
by the so-called Landau–Lifshitz–Gilbert (LLG) equation [1–3]

Ṁ = −γ M × B +
α

M
M × Ṁ, (1)

where M = |M|, Ṁ = dM/dt and α > 0. It was shown that the LLG equation provides
a realistic model of ferromagnetic resonance, micromagnetics, spin-valve dynamics [4], the
magnetism of thin films [5] and nanomagnets [6] and the dynamics of domain walls in various
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geometries [7]. Moreover, the LLG equation and the damping parameter can be derived from
microscopic models [8, 9].

The linear nature of the Bloch equation allowed for the discovery of many analytic
solutions. For example, a recent work identified 26 families of solutions that can be expressed
in terms of special functions [10] and significant steps towards the general solution were carried
out [11, 12]. Even when analytic solutions are not available, powerful analytic approximation
methods exist [13–15].

By contrast, very few solutions of the physically more accurate LLG equation are known.
In this paper, we describe a method by which any analytic solution of the Bloch equation
can be transformed into an analytic solution of the LLG equation. Then, we prove that this
transformation turns the linear Schrödinger equation for a two-level system into a nonlinear
Schrödinger equation. As an application, we investigate the influence of damping on self-
induced transparency.

2. From Bloch to LLG

We describe now the transformation from the solution of the Bloch equation to the solution of
the LLG equation. Consider a solution of the Bloch equation Ṁ(γ ) = −γ M(γ ) × B, where
the dependence of M on the gyromagnetic factor γ is explicit and where B is a real function
of t. Assume now that M(γ ) is an analytic function of γ . This allows us to define N = M(γ̄ ),
where γ̄ = γ /(1 − iα), and gives us

Ṅ = Ṁ(γ̄ ) = −γ̄ M(γ̄ ) × B = − γ

1 − iα
N × B.

Note that the components of N are generally complex numbers. The equation of motion
implies that the length M of N, defined by M2 = ∑

i M
2
i (γ̄ ) = ∑

i N
2
i , does not depend on t.

We consider now the complex number

ξ = Nx + iNy

M + Nz

. (2)

If we calculate the derivative of ξ with respect to t, taking account of the fact that M does not
depend on time, we find

ξ̇ = Ṅx + iṄy

M + Nz

− (Nx + iNy)Ṅz

(M + Nz)2
. (3)

If we substitute the equation of motion for Ṅ, we can check that ξ satisfies

ξ̇ = iγ

2(1 − iα)
(B−ξ 2 + 2Bzξ − B+), (4)

where B± = Bx ± iBy . The complex function ξ is used to define the vector M′ by

M ′
x = ξ + ξ ∗

|ξ |2 + 1
M,

M ′
y = −i

ξ − ξ ∗

|ξ |2 + 1
M,

M ′
z = 1 − |ξ |2

|ξ |2 + 1
M,
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so that we still have

ξ = M ′
x + iM ′

y

M + M ′
z

. (5)

This equation is identical to equation (2), but the components of M′/M are real, whereas the
components of N/M are usually complex.

We want to determine the equation of motion satisfied by M′. The derivative of M′ with
respect to t gives us

Ṁ ′
x = ξ̇ − ξ̇ (ξ ∗)2 + ξ̇ ∗ − ξ̇ ∗ξ 2

(|ξ |2 + 1)2
M,

Ṁ ′
y = −i

ξ̇ + ξ̇ (ξ ∗)2 − ξ̇ ∗ − ξ̇ ∗ξ 2

(|ξ |2 + 1)2
M,

Ṁ ′
z = −2

ξ̇ ξ ∗ + ξ ξ̇ ∗

(|ξ |2 + 1)2
M.

If we express ξ̇ and ξ̇ ∗ through equation (4) and its conjugate, we obtain Ṁ′ in terms of ξ

and ξ ∗. If we replace them by equation (5) and its conjugate, we obtain, after a lengthy but
straightforward calculation,

Ṁ ′
x = − γ

1 + α2
(BzM

′
y − ByM

′
z) − αγ

(1 + α2)M

× (
ByM

′
xM

′
y − BxM

′2
y + BzM

′
xM

′
z − BxM

′2
z

)
,

Ṁ ′
y = − γ

1 + α2
(BxM

′
z − BzM

′
x) − αγ

(1 + α2)M

× (
BzM

′
yM

′
z − ByM

′2
z + BxM

′
yM

′
x − ByM

′2
x

)
,

Ṁ ′
z = − γ

1 + α2
(ByM

′
x − BxM

′
y) − αγ

(1 + α2)M

× (
BxM

′
zM

′
x − BzM

′2
x + ByM

′
zM

′
y − BzM

′2
y

)
.

This can be rewritten as

Ṁ′ = − γ

1 + α2
M′ × B − γα

(1 + α2)M
M′ × (M′ × B).

We recognize the Landau–Lifshitz equation in a form equivalent to the LLG equation. To
show the equivalence, use the LLG equation to derive M′ × Ṁ′ = −γ M′ × (M′ × B) −
αMṀ′, introduce this expression in the LLG equation and solve for Ṁ′. Thus, we have
transformed a solution M of the Bloch equation into a solution M′ of the LLG equation (1).

3. Constant external field

We discuss now the simplest example of this transformation, to show how the method works
in practice. We consider a constant external magnetic field along the z-axis, i.e. B(t) =
(0, 0, B0). The solution of the Bloch equation is

Mx = M sin θ0 cos(�t + φ0),

My = M sin θ0 sin(�t + φ0),

Mz = M cos θ0,
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where M, θ0 and φ0 are constants and � = γB0. M is obviously an analytic function of γ and
we can substitute γ /(1 − iα) for γ in M to define the vector N. This gives us

ξ = tan
θ0

2
ei(�′t+φ0) e−α�′t ,

with �′ = �/(1 + α2) and we recover the well-known solution of the LLG equation:

M ′
x = M

sin θ0 cos(�′t + φ0)

cosh(α�′t) + cos θ0 sinh(α�′t)
,

M ′
y = M

sin θ0 sin(�′t + φ0)

cosh(α�′t) + cos θ0 sinh(α�′t)
,

M ′
z = M

cos θ0 cosh(α�′t) + sinh(α�′t)
cosh(α�′t) + cos θ0 sinh(α�′t)

.

If � > 0, the equilibrium magnetization is M′ = (0, 0,M); if � < 0, it is M′ = (0, 0,−M).
As expected, damping transforms a precession dynamics into a motion towards an equilibrium
state.

4. Two-level systems

It is convenient to determine directly the influence of damping on the dynamics of the two-
level system described in the Schrödinger or Heisenberg picture. For a two-level system, the
Schrödinger equation is

ih̄
dψ

dt
= H(t)ψ,

where ψ has two components ψ1 and ψ2. The Hamiltonian can be written as H(t) =
(h̄γ /2)

(
B0(t) +

∑
j Bj (t)σj

)
, where the constant γ has been added for later convenience

and where σj are the Pauli matrices, so that σaσb = δab + iεabcσc. Defining f (t) =
exp

(−iγ
∫ t

0 B0(τ ) dτ
)

and ψ(t) = f (t)ψ ′(t) turn the Schrödinger equation for ψ into a
Schrödinger equation for ψ ′ with the Hamiltonian H = (h̄γ /2)

∑
j Bjσj . Thus, without loss

of generality, we use the latter Hamiltonian.
Following Feynman et al [16], the relation between the density matrix ρ (with matrix

elements ρij = ψiψ
∗
j ) and the magnetic moment M is Mx = ρ12 + ρ21,My = i(ρ12 − ρ21)

and Mz = ρ11 − ρ22. Thus, we obtain ρ = (1/2)
(
1 +

∑
j Mjσj

)
and |M| = 1. We see that

ξ = (Mx + iMy)/(1 + Mz) = ψ2/ψ1. If we diagonalize ρ, we recover the states ψ1 and ψ2 up
to a phase that cannot be specified easily. Therefore, we shall work with the density matrix.
The equation of motion for ρ is

dρ

dt
= − i

h̄
[H, ρ].

The commutation relations for the Pauli matrices turn this equation into the Bloch equation

Ṁ = −γ M × B.

To turn the Bloch equation into the LLG equation, we just replace M by M′ and B by
B− (α/γ )Ṁ′. If we denote by ρ ′ the density matrix corresponding to M′, we find the equation
of motion in the presence of damping

ρ̇ ′ = − i

h̄
[H, ρ ′] + iα[ρ̇ ′, ρ ′].

In other words, the damping term of the LLG equation is transformed into a nonlinear term
iα[ρ̇ ′, ρ ′] in the equation of motion of the density matrix.
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If we replace B by B−(α/γ )Ṁ′ in the Schrödinger equation itself, we obtain the nonlinear
Schrödinger equation

dψ ′
1

dt
= ((

1 + 2iα|ψ ′
2|2

)
B3 − iαψ1(ψ

′
2)

∗B+
)
ψ ′

1 +
(
1 + iα|ψ ′

2|2
)
B−ψ ′

2,

dψ ′
2

dt
= −((

1 + 2iα|ψ ′
1|2

)
B3 + iα(ψ ′

1)
∗ψ ′

2B−
)
ψ ′

2 +
(
1 + iα|ψ ′

1|2
)
B+ψ

′
1.

Therefore, our method transforms the analytic solution of a Bloch equation into the analytic
solution of a nonlinear Schrödinger equation. We also reach the surprising conclusion that the
nonlinear terms in the nonlinear Schrödinger equation can describe the influence of damping.
However, this damping does not create decoherence: the transformed vector M′ is still real
and of length 1. As a consequence, (ρ ′)2 = ρ ′ and ρ ′ is the density matrix of a pure state.

5. Self-induced transparency

We investigate now the effect of damping on a famous nonperturbative effect in two-level
systems: self-induced transparency.

McCall and Hahn [17] discovered a solution of the Bloch equation for the hyperbolic
secant pulse B = (a/cosh(t/τ ), 0, 0). We recall that

∫ ∞
−∞ dt/cosh(t/τ ) = τπ . We consider

more generally a spin system submitted to a time-varying magnetic field linearly polarized
along Ox: B = (b(t), 0, 0), where b(t) is only required to be integrable. At time t = t0, the
spin has the spherical coordinates θ0 and φ0. Let f (t) = ∫ t

t0
dτ b(τ) and a = (1 − ξ0)/(1 + ξ0)

with ξ0 = tan(θ0/2) eiφ0 . The solution of the Bloch equation is

Mx(t) = M
1 − ρ2

1 + ρ2
,

My(t) = −2M
ρ sin(x(t) + ϕ)

1 + ρ2
,

Mz(t) = 2M
ρ cos(x(t) + ϕ)

1 + ρ2
,

where ρ and ϕ are the modulus and argument of a, respectively, and x(t) = γf (t). Self-
induced transparency occurs when x(∞) = 2nπ because, after a long interaction with the
external field, the system finds itself back in its state at t0. In the case of the McCall and
Hahn pulse, we find f (t) = 2aτarctan(tanh((t − t0)/2τ)), which tends to aτπ/2 for large t.
Therefore, self-induced transparency occurs when γ aτ = 4n for some integer n.

To determine the effect of damping on this phenomenon, we calculate

ξ = 1 − a eiγ̄ f (t)

1 + a eiγ̄ f (t)
,

and the corresponding solution of the LLG equation is

M ′
x(t) = M

e2αx̄(t) − ρ2

e2αx̄(t) + ρ2
,

M ′
y(t) = −2M

eαx̄(t)ρ sin(x̄(t) + ϕ)

e2αx̄(t) + ρ2
,

M ′
z(t) = 2M

eαx̄(t)ρ cos(x̄(t) + ϕ)

e2αx̄(t) + ρ2
,

with x̄(t) = γf (t)/(1 + α2). Two effects can be observed. First, the resonance condition is
shifted from x(∞) = 2nπ to x(∞) = 2nπ(1 + α2); second, even at resonance the initial state
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is not fully recovered. For example, if the system is initially in the state ψ1(0) = 1, ψ2(0) = 0,
we have M = 1, ρ = 1 and ϕ = 0 and the final state is, at resonance,

M ′
x(∞) = tanh(αx̄(∞)),

M ′
y(∞) = 0,

M ′
z(∞) = 1

cosh(αx̄(∞))
.

The initial state cannot be recovered because αx̄(∞) �= 0. Therefore, although the damping
of the LLG equation amounts only to a trend towards an equilibrium state and not to a
decoherence, it leads to a loss of self-induced transparency. However, if α is small, this loss
is reasonably small.

Exact solutions describing self-induced transparency in the presence of an amplitude- and
frequency-modulated pulse were discovered by Hioe [18]. The transformation applies to this
more general case.

6. Conclusion

It was shown in this paper that analytic solutions of the Bloch equations can be transformed
into analytic solutions of the LLG equation. The influence of damping leads to interesting
results for two-level systems, in particular the transformation of the linear into the nonlinear
Schrödinger equation. As an application, we provided an exact description of self-induced
transparency in the presence of damping.
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